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The electronic structure of a vortex line trapped by an insulating columnar defect in a type-II superconductor
is analyzed within the Bogolubov–de Gennes theory. For quasiparticle trajectories with small impact param-
eters defined with respect to the vortex axis, the normal reflection of electrons and holes at the defect surface
results in the formation of an additional subgap spectral branch. The increase in the impact parameter at this
branch is accompanied by the decrease in the excitation energy. When the impact parameter exceeds the radius
of the defect this branch transforms into the Caroli–de Gennes–Matricon one. As a result, the minigap in the
quasiparticle spectrum increases with the increase in the defect radius. The scenario of the spectrum transfor-
mation is generalized for the case of arbitrary vorticity.
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I. INTRODUCTION

The study of magnetic and transport properties of type-II
superconductors in the presence of artificial pinning centers
is known to be an important direction in the physics of vor-
tex matter.1 The artificial pinning provides a unique possibil-
ity to control the critical parameters of superconducting ma-
terials which are important in various applications. For
instance, the critical current jc and the irreversibility field Hirr
can be enhanced by the inclusion of normal particles and
nanorods,2,3 by introducing arrays of submicrometer holes,4,5

and by proton6 and heavy-ion irradiation.7 Pinning of flux
lines appears to be especially strong for the case of columnar
defects elongated nearly parallel to the applied magnetic
field when vortices can be pinned over their entire length.
These columnar defects are now widely used to trap vortices
and to increase the current carrying capacity of supercon-
ductors.

Within the London approximation the interaction between
a single vortex and an insulating cylindrical cavity of radius
R��, where � is the London penetration depth, was consid-
ered in the pioneering paper8 for bulk type-II superconduct-
ors. For a multiquantum vortex it was shown8 that the maxi-
mum number of flux quanta which can be trapped by the
cylindrical cavity is restricted by the value R /2�, where � is
the superconducting coherence length. The generalization of
the results of Ref. 8 for cylindrical cavities of radii R�� has
been obtained in Ref. 9. An efficient image method appro-
priate for the analysis of the vortex-defect interaction in the
limit of rather large � values has been developed in.10,11 The
formation of superconducting nuclei with nonzero vorticities
near the columnar defects or in perforated films has been
studied in Refs. 12 and 13.

Certainly the phenomenological approaches used in most
of the works cited above cannot describe the electronic struc-
ture of the vortex states in the presence of small cavities or
columnar defects of the radius smaller than the coherence
length �. This issue is closely related to the problem of mi-
croscopic nature of pinning addressed previously in Ref. 14
for a particular case of pointlike defects with the scattering
cross section much smaller than the �2 value. An appropriate
modification of the quasiparticle spectra caused by a single

impurity atom placed in a vortex core has been studied in
Ref. 15. The case of vortices trapped by normal-metal cylin-
drical defects has been addressed in Refs. 16 and 17. The
interest to microscopic calculations of electronic structure of
the vortex states is stimulated by low-temperature scanning
tunneling microscopy �STM� experiments which provide de-
tailed spatially resolved excitation spectra.18–20 The modern
STM techniques could provide us the information about the
number and configuration of the spectral branches crossing
the Fermi level. Recent STM experiments on NbSe2 single
crystals with a regular array of submicron Au antidots have
provided images of both single-quantum Abrikosov vortices
and multiquanta vortex states forming near normal
antidots.21

The goal of our paper is to analyze the transformation of
the quasiparticle excitation spectra which occurs in a vortex
pinned by a columnar defect of finite radius R��. We focus
on the modification of the anomalous energy branches
caused by normal reflection of quasiparticles at the columnar
defect boundary. To elucidate the key points of the present
work we start from the qualitative discussion of the spectrum
transformation scenario. Let us consider a vortex pinned at
an isolating cylinder of a radius R �see Fig. 1�. The spectrum
of quasiparticle states can be analyzed considering one-
dimensional quantum mechanics of electrons and holes along
a set of linear quasiclassical trajectories. Each trajectory is
defined by the impact parameter b and the trajectory orien-
tation angle �see Fig. 1�. For small impact parameters b�R
the trajectories experience a normal reflection from the de-
fect surface. Hereafter we assume this reflection to be specu-
lar. Far from the reflection point O the superconducting gap
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FIG. 1. Specular reflection of a quasiclassical trajectory at the
defect surface.
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is homogeneous ����=�0� and the corresponding supercon-
ducting phase difference 	
 between the trajectory ends is
defined by the impact parameter b :	
=2 arcsin��b� /R�. Ne-
glecting the details of the inhomogeneous profile of the order
parameter inside the vortex core, we can take the gap func-
tion in the form: ��s�=�0 exp�i arcsin��b� /R�sign s�, where s
is the coordinate changing along the trajectory. The one-
dimensional quantum-mechanical problem with such order
parameter is equivalent to the one describing a single mode
Josephson constriction.22 The subgap spectrum in this case is
known to consist of two energy branches: �J

��b�
= ��0 cos�	
 /2�= ��0

�1−b2 /R2, which correspond to the
opposite momenta of quasiparticles propagating along the
trajectory. Thus, for small impact parameters the scattering
of quasiparticles at the defect surface is expected to result in
the formation of new energy branches which are splitted
from the continuum. Taking the quasiclassical trajectories
with large impact parameters b
R one can see that these
trajectories are not perturbed by the scattering at the defect,
and as a consequence, the spectrum in this case should be
described by the well-known Caroli–de Gennes–Matricon
�CdGM� expression.23 The crossover between two different
regimes occurs in the region b� �R, which should be cer-
tainly treated more accurately �see below�. One can expect
that in this region the CdGM energy branch �0�b� is cut at
the energies �� ��0�R� and transforms into the spectral
branches �J

� approaching ��0 with the further decrease in
the �b� value. The resulting spectrum as a function of a con-
tinuous parameter b does not cross the Fermi level: there
appears a minigap ��0�R�. For R�� this minigap can be
approximately written as �0�R���0R /�. The increase in the
defect radius is accompanied by the minigap increase, and
for R�� all the subgap states appear to be only weakly
splitted from the ��0 value.

The paper is organized as follows. In Sec. II we briefly
discuss the basic equations used for the spectrum calculation.
In Sec. III we study the quasiparticle spectrum transforma-
tion for a singly quantized vortex pinned at a columnar de-
fect. In Sec. IV we generalize our analysis for the case of a
multiquantum vortex trapped by the defect. Section V is de-
voted to the analysis of the peculiarities of the local density
of states �DOS� for a vortex pinned at the defect. We sum-
marize our results in Sec. VI.

II. BASIC EQUATIONS

Hereafter we consider a columnar defect as an insulating
infinite cylinder of the radius R. The magnetic field B is
assumed to be parallel to the cylinder axis z. We assume the
system to be homogeneous along the z axis, thus, the kz
projection of the momentum is conserved. The quantum me-
chanics of quasiparticle excitations in a superconductor is
governed by the two-dimensional Bogolubov–de Gennes
�BdG� equations for particlelike �u� and holelike �v� parts of

the two-component quasiparticle wave functions �̂�r ,z�
= �u ,v�exp�ikzz�:

−
�2

2m
��2 + k�

2 �u + ��r�v = �u , �1a�

�2

2m
��2 + k�

2 �v + ���r�u = �v . �1b�

Here �=�xx0+�yy0, r= �x ,y� is a radius vector in the plane
perpendicular to the cylinder axis, ��r� is the gap function,
and k�

2 =kF
2 −kz

2.
Following the procedure described in Refs. 24–26 we in-

troduce the momentum representation:

�̂�r� = 	u

v

 =

1

�2���2� d2peipr/��̂�p� , �2�

where p= �p��cos �p , sin �p�= pp0. The unit vector p0 param-
etrized by the angle �p defines the trajectory direction in the
�x ,y� plane. We assume that our solutions correspond to the
momentum absolute values p close to the value �k� : p
=�k�+q��q���k��. As a next step, we introduce a Fourier
transformation:

�̂�p� =
1

k�
�

−�

+�

dsei�k�−�p�/��s�̂�s,�p� . �3�

Finally, the wave function in the real space r
=r�cos � , sin �� is expressed from Eqs. �2� and �3� in the
following way �see Ref. 25�:

�̂�r,�� = �
0

2�

eik�r cos��p−���̂�r cos��p − ��,�p�
d�p

2�
, �4�

where �r ,� ,z� is a cylindrical coordinate system. The quasi-
particle wave function inside the defect should vanish be-
cause of the insulating gap in the material of the defect. It is
this insulating gap which results in the appearance of the
effective potential jump at the defect surface. Assuming the
amplitude of this potential jump to be infinitely large we get
the following boundary condition at the surface of the insu-
lating cylinder:

�̂�R,�� = 	u

v



r=R

=
1

2�
�

0

2�

d�peik�R cos��p−���̂�R cos��p − ��,�p� = 0.

�5�

To obtain the Andreev equations along the trajectories we
look for a solution in the eikonal approximation,

�̂�s,�p� = eiS��p�ĝ�s,�p� ,

assuming ĝ to be a slowly varying function of �p. Quasipar-
ticles propagating along the classical trajectories parallel to
k�=k��cos �p , sin �p� are characterized by the angular mo-
mentum �=−k�b, where

b = −
1

k�

�S

��p
�6�

is the trajectory impact parameter. Assuming the vortex axis
to coincide with the cylinder axis we obtain the axially sym-
metric problem with the conserved angular momentum �.
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Finally, the quasiclassical equations for the envelope
ĝ�s ,�p� read as follows:

− i�V��̂z
� ĝ

�s
+ �̂x Re ��r�ĝ − �̂y Im ��r�ĝ = 	� +

��H

2
�
ĝ ,

�7�

where �̂i are the Pauli matrices, mV�=�k�, �H= �e�H /mc is
the cyclotron frequency, and

x = s cos �p − b sin �p, y = s sin �p + b cos �p,

x � iy = �s � ib�e�i�p.

The term proportional to �H can be included to the energy as
an additive constant �see also Ref. 27�:

� = � +
��H

2
� .

Our further analysis of quasiparticle excitations is based on
the Andreev Eq. �7� which must be supplemented by bound-
ary condition �5�.

III. SINGLY QUANTIZED VORTEX PINNED BY A
COLUMNAR DEFECT

We now proceed with the analysis of the subgap spectrum
for a singly quantized vortex trapped by the columnar defect
of the radius R. The order parameter ��x ,y� takes the form

� = �0	v�r�ei�, r = �x2 + y2 � R . �8�

Here 	v�r� is a normalized order-parameter magnitude for a
vortex centered at r=0, such that 	v�r�=1 for r→�. In
�s ,�p� variables one obtains for r=�s2+b2�R,

� = Db�s�ei�p, Db�s� = �0
	v��s2 + b2�

�s2 + b2
�s + ib� . �9�

The cylindrical symmetry of our system allows to separate
the �p dependence of the function ĝ:

ĝ�s,�p� = ei�̂z�p/2 f̂�s� . �10�

The total wave function �̂�s ,�p� should be single valued and,
thus, the angular momentum � is half an odd integer. The
quasiclassical Eqs. �7� take the form

− i�V��̂z�s f̂ + �̂b�s� f̂ = � f̂ , �11�

where

�̂b�s� = �̂x Re Db�s� − �̂y Im Db�s� �12�

is the gap operator. Changing the sign of the coordinate s one
can observe a useful symmetry property of the solution of
Eq. �11�:

f̂�− s� = � �̂y f̂�s� . �13�

A. Boundary condition

As a next step we rewrite boundary condition �5� for wave

functions f̂�s� defined at the trajectories. Replacing �p by

�=�p−� and shifting the limits of integration in Eq. �5� we
find

�
0

2�

d�eik�R cos �+i���ei�̂z�/2 f̂�R cos ��� = 0. �14�

Assuming k�R�1 and the function ei�̂z�/2 f̂�s� to vary slowly
at the atomic length scale, we evaluate the above integral
using the stationary phase method. For a given value of an-
gular momentum � the stationary phase points are given by
the condition: sin �1,2=� /k�R=−b /R. One can see that for
�b�
R the stationary phase points disappear and, as a result,
the integral �Eq. �14�� is always vanishingly small. In this
case the boundary condition at the cylinder surface does not

impose any restrictions on the wave function f̂ defined at the
trajectories. In the opposite limit �b��R one can find two
stationary angles �1=�0�−arcsin�b /R� and �2=�−�0
which are in fact the orientation angles for an incident and
specularly reflected trajectories shown in Fig. 1. Summing
over two contributions we can rewrite boundary condition
�14� as follows:

ei
̂0 f̂�s0� = e−i
̂0 f̂�− s0� , �15�

where s0=�R2−b2, 2�0=�0−� /2, and


̂0 = k�s0 + �2� + �̂z��0 − 3�/4.

B. Solution for large impact parameters 
b

R

In this case the quasiparticle states at the trajectories are
not affected by the normal scattering at the columnar defect
boundary and the behavior of an anomalous energy branch is
described by the standard CdGM solution for a single Abri-
kosov vortex. For the sake of completeness we give below
the expressions for this spectrum and the corresponding
wave functions.

Let us follow the derivation in Ref. 28 and consider the
imaginary part of the gap operator �Eq. �12�� as a perturba-
tion. Neglecting this term in Eq. �11� we find

− i�V��̂z�s f̂0 + �̂x Re Db�s� f̂0 = � f̂0. �16�

The above equation has a zero eigenvalue �=0 with the fol-
lowing expression for the corresponding normalized eigen-

function f̂0:

f̂0 =� 1

2I
	 1

− i

e−K0�s�, �17�

where

K0�s� =
1

�V�
�

0

s

dt Re Db�t�, I0 = �
−�

+�

dse−2K0�s�.

�18�

The first-order perturbation theory gives us the CdGM exci-
tation spectrum �0�b� for �b�
R:

�0�b� =
b�0

I0
�

−�

+�

ds
	v��s2 + b2�

�s2 + b2
e−2K0�s�. �19�
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C. Solution for small impact parameters 
b
�R

In this case the specular reflection at the cylinder surface
changes the trajectory direction and strongly modifies the
spectrum. The boundary condition at the surface r=R is de-
termined by Eq. �15�. Let us introduce the function

F̂�s� =�e+i
̂0 f̂�s + s0� , s 
 0

e−i
̂0 f̂�s − s0� , s � 0,
� �20�

which is defined at the full s axis and appears to be continu-

ous at s=0: F̂�−0�= F̂�+0�. The equation for F̂ reads as fol-
lows:

− i�V��̂z�sF̂ + �̂x Re G�s�F̂ − �̂y Im G�s�F̂ = �F̂ , �21�

where

G�s� = − �0
	v����s� + s0�2 + b2�

���s� + s0�2 + b2

��sb/R + i�R + �s��1 − b2/R2�� . �22�

Taking the limit of large �s� we find

G�s� � − i�0ei�0�s�/s. �23�

One can see that in agreement with the qualitative arguments
given in Sec. I the phase difference between the opposite
ends of the trajectory equals to 	
=−2�0=2 arcsin�b /R�.
Provided we neglect the inhomogeneity of both the ampli-
tude and phase of the order parameter along the trajectory
with the impact factor b, we find the exact localized solution
of the eigenvalue problem �Eqs. �21� and �23��:

� = ��0
�1 − b2/R2, �24�

F̂�s� =� �b�
4R�

	 1

i�

e−�b�s�/R�, �25�

where �=sign b and �=�VF /�0 is the coherence length.
Certainly such simplification does not allow us to study

the crossover to the CdGM branch which occurs at b� �R.
To develop an analytical description of this crossover we
choose to apply the method used above to derive standard
CdGM expressions and based on the perturbation theory
with respect to the imaginary part of the gap function. One
can expect this method to be most adequate for the crossover
region of b�R. As for the limit b�R we shall check the
validity of this method using the comparison with our direct
numerical analysis of Eqs. �21� and �22�.

Neglecting the imaginary part of G we find an exact so-
lution of Eq. �21� corresponding to zero energy �=0:

F̂0�s� =� 1

2I
	 1

i�

e−K�s�, �26�

where

K�s� =
�

�V�
�

0

s

dt Re G�t�, I = �
−�

+�

dse−2K�s�. �27�

Solutions �26� and �27� appear to decay both at negative and
positive s and, thus, we get a localized wave function de-
scribing a bound state. Using this localized solution as a
zero-order approximation for the wave function the spectrum
can be found within the first-order perturbation theory. Note,
that our perturbation procedure fails for �b�→0 because of
the increase in the localization radius of the wave function
�Eq. �26��.

The first-order approximate solution of the quasiclassical
Eqs. �21� and �22� takes the form

F̂�s� = A	 1

i�

e−K�s� + B�s�	 1

− i�

eK�s�, �28�

where

B�s� =
iA

�V�
�

−�

s

dt�� − � Im G�t��e−2K�t�. �29�

To avoid the wave function divergence we should put

�
−�

�

dt�� − � Im G�t��e−2K�t� = 0.

This condition gives us the excitation spectrum �s as a func-
tion of the impact parameter b for �b��R:

�s�b� =
��0

I
�

−�

+�

ds
	v����s� + s0�2 + b2�

���s� + s0�2 + b2

��R + �s��1 − b2/R2�e−2K�s�. �30�

It is evident that �s�R�=�0�R� and, thus, expressions �19� and
�30� describe the spectrum ��b� for an arbitrary impact pa-
rameter b:

��b� = ��s�b� , �b� � R

�0�b� , �b� 
 R .
� �31�

The discontinuity of the derivative d� /db at �b�=R appears
because of the breakdown of the above quasiclassical de-
scription for the rectilinear trajectories touching the surface
of the defect.

Let us compare the above analytical expressions with the
ones based on the assumption of a negligible order-parameter
inhomogeneity inside the core. The qualitative behavior of
the spectrum is weakly sensitive to the concrete profile of the
gap amplitude inside the core, and thus, we choose a simple
model dependence,

	v�r� = r/�r2 + �2, �32�

neglecting, thus, the influence of the defect on the behavior
of the gap profile. We consider here only the spectrum for
positive energies and kz momenta because the eigenvalues
for ��0 and kz�0 can be found using the spectrum sym-
metry properties: ��−b ,kz�=−��b ,kz� and ��b ,−kz�=��b ,kz�.
In Fig. 2 we plot the new branches of quasiparticle spectra
obtained using Eq. �30� for different radii of the columnar
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defect. For comparison we present also solution �24�, which
does not account variations in both the amplitude and phase
of the order parameter along the quasiparticle trajectory. So-
lution �24� provides a good approximation for expression
�30� only for rather small column defect radii since the spec-
tra for large R are strongly affected by the Doppler shift
associated with the order-parameter phase inhomogeneity.
The influence of the inhomogeneity of the gap absolute
value, which comes into play only for small defect radius
R��, appears to be much weaker as compared to the Dop-
pler shift effect.

In Fig. 3 we compare the typical plots of quasiparticle
spectra obtained analytically, i.e., using Eq. �31�, and nu-
merically. To find the spectral branch ��b ,kz� numerically we
solve quasiclassical Eq. �11� for s�s0 requiring the decay of

the wave function f̂ at s→�. An appropriate boundary con-
dition for electron fu and hole fv components of the wave

function f̂ = �fu , fv� at s=0 can be found from Eq. �15� and
the symmetry property �Eq. �13��:

fv�s0� = ei�0fu�s0� . �33�

For �b�
R we put s0=0, and boundary condition �33� takes
the form fv�0�=−i�fu�0�. Comparing the spectrum �Eq. �31��
with the branches obtained from the direct numerical analy-
sis of the eigenvalue problem �Eqs. �11� and �33�� one can
see that the perturbation method provides a reasonable de-
scription of the energy spectrum behavior in a wide range of
the impact parameters. As one would expect, the perturbation
procedure fails for small impact parameters �b��R. Contrary
to the CdGM case the spectrum branch �Eq. �31�� does not
cross the Fermi level, and the minigap in the quasiparticle
spectrum �min=��R� grows with the increase in the cylinder
radius R �see Fig. 3�a��. Existence of the minigap in the
spectrum of quasiparticles should result in peculiarities of
the DOS and can be probed by the STM measurements. For
����kFR the spectrum ��kz� has a minimum �see Fig. 3�b��,
therefore we can expect the appearance of a van Hove sin-
gularity in the energy dependence of the DOS.

IV. QUASIPARTICLE SPECTRUM OF A
MULTIQUANTUM VORTEX

In this section we generalize the above analysis for the
case of a multiquantum vortex pinned by the columnar defect
of the radius R. The multiquantum vortices can be trapped at
columnar defects either for a rather large defect radius or for
the mixed state in mesoscopic samples.21,29–31 In the absence
of defects the spectrum of a multiquantum vortex with the
vorticity M is known to consist of M anomalous energy
branches.28 The behavior of these branches has been previ-
ously investigated both numerically and
analytically.16,17,26,32,33 Here we restrict ourselves by the nu-
merical solution of the eigenvalue problem �Eq. �11�� assum-
ing that the order parameter �M�r� takes the form

�M�r� = �0�	v�r��MeiM�, r � R , �34�

where the function 	v�r� is determined by expression �32�. In
�s ,�p� variables one obtains for s�s0

FIG. 2. �Color online� Quasiparticle spectra calculated using Eq.
�30� for different values of the cylinder radius R and kz=0 are
shown by solid lines. The numbers near the curves denote the cor-
responding values of R /�. The dash lines show the dependence �Eq.
�24�� for the homogeneous order-parameter profile. Dotted line cor-
responds to the CdGM branch of the spectrum �Eq. �19��.

(a) (b)

FIG. 3. �Color online� The quasiparticle spectra obtained from the numerical solution of the eigenvalue problem �Eqs. �11� and �33��. �a�
The spectral branches as functions of the impact parameter b are shown by red triangles �kz=0� and circles �kz=0.9kF�. �b� The spectral
branches as functions of the kz momenta are shown by red circles ��=−10.5�, triangles ��=−18.5�, and squares
��=−25.5�. The spectral branches calculated using Eq. �31� are shown by blue dash lines. Here we put R=0.1� and kF�=200.
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�M = DM�s�eiM�p, �35�

DM�s� = �0�	v��s2 + b2�
�s2 + b2 �M

�s + ib�M . �36�

Using the transformation

ĝ�s,�p� = eiM�̂z�p/2 f̂�s� , �37�

we can rewrite the quasiclassical Eq. �7� in form �11� with
the gap operator

�̂b�s� = �̂x Re DM�s� − �̂y Im DM�s� . �38�

The symmetry properties of both the gap operator �̂b�s� and
Eq. �11� depend on the vorticity M:

�̂b�− s� =� �̂b
��s� for even M

− �̂b
��s� for odd M .

� �39�

This fact allows to obtain the following condition:

f̂�− s� =�C�̂x f̂�s� for even M

C�̂y f̂�s� for odd M ,
� �40�

which generalizes condition �13� for a multiquantum vortex.
Here C is an arbitrary constant. Using the stationary phase
method we can write the boundary condition for wave func-

tions f̂�s� at the surface of the insulating cylinder in the form

ei
̂Mf̂�s0� = e−i
̂Mf̂�− s0� , �41�

where


̂M = k�s0 + �2� + M�̂z��0 − 3�/4.

Taking into account Eq. �40� boundary condition �41� can be
written for electron fu and hole fv components of the wave

function f̂:

fv�s0� = � eiM�0fu�s0� . �42�

For �b�
R we can put here s0=0 and �0=−� /2. The choice
of the sign in Eq. �42� depends on the number of the spectral
branch. The typical plots of quasiparticle spectra obtained

from numerical solution of the eigenvalue problem �Eqs. �11�
and �38�� with boundary condition �42� for vortices with
winding numbers M =2,3 are shown in Fig. 4. Similarly to
the case of a singly quantized vortex the small b part of the
spectrum is formed by the spectral branches induced by the
normal scattering at the defect. These branches transform
into the standard anomalous ones with the increase in the �b�
value. With the increase in the cylinder radius all the spectral
branches appear to be expelled from the Fermi level.

V. LOCAL DENSITY OF STATES FOR A PINNED VORTEX

We now proceed with the calculations of the local DOS
for a singly quantized vortex pinned at a columnar defect.
This quantity is known to be directly probed in the scanning
tunneling microscopy/spectroscopy experiments. For the
sake of simplicity we assume here the Fermi surface to be a
cylinder and neglect the dependence of the quasiparticle en-
ergy on the momentum component kz along the cylinder axis
z considering a motion of quasiparticles only in �x ,y� plane.
The peculiarities of the local DOS are usually determined
from the analysis of the local differential conductance:

dI/dV

�dI/dV�N
= �

−�

�

d�
N�r,��

N0

� f�� − eV�
�V

, �43�

where V is the applied voltage, �dI /dV�N is a conductance of
the normal-metal junction, and f���=1 / �1+exp�� /T�� is a
Fermi function. Within the quasiclassical approach the local
DOS,

N�r,�� = kF� db�ub�r��2	�� − ��b�� , �44�

can be expressed through the electron component ub�r� of
quasiparticle eigenfunctions corresponding to the energy
��b� determined by Eqs. �19�, �30�, and �31�. The wave func-
tion,

(a) (b)

FIG. 4. �Color online� The spectral branches as functions of the impact parameter b obtained from the numerical solution of the
eigenvalue problem �Eqs. �11� and �38�� for �a� M =2 and �b� M =3 �R=0.1��.
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�̂b�r,�� = 	ub�r,��
vb�r,��



= ei�2�+�̂z��/2�

0

2� d�

2�
eikFr cos �+i�2�+�̂z��/2 f̂�r cos �� ,

�45�

in the limit kFr�1 can be evaluated using the stationary
phase method. For an impact parameter �b��r the stationary
phase points are given by the condition: sin �1,2=−b /r. Sum-
ming over two contributions in the vicinity of the stationary
angles �1=�r and �2=�−�r, we can write the electron com-
ponent ub�r ,�� of quasiparticle eigenfunctions as follows:

ub�r,�� = 	 1

2�kF

1/2ei�2�+1��/2

�sr

� �fu�sr�ei
r + fu�

− sr�e−i
r+i�2�+1��/2� , �46�

where sr=r�cos �r�=�r2−b2. The phase


r = kFr cos �r + ����r − ��r/2 − �/4

is determined by the trajectory orientation angle
�r=−arcsin�b /r�. Neglecting the oscillations at the atomic
length scale we obtain the following slowly varying enve-
lope function:

�ub�r��2 �
exp�− 2Kb��r2 − b2��

2�kFIb
�r2 − b2

, �47�

where

Kb�s� = � K�s� , �b� � R

K0�s� , R � �b� � r ,
�

Ib = �
−�

+�

dse−2Kb�s�.

We have calculated the differential conductance using Eqs.
�43�, �44�, and �47� for particular values T /�0=50 and R /�
=0.1. The resulting plot of the differential conductance
dI /dV vs r /� and eV /�0 is shown in Fig. 5�a�. The typical
examples of dependence of the local differential conductance
dI /dV vs the bias voltage eV at various distances r from the
cylinder axis are shown in Fig. 5�b�. In order to compare our
results with the standard CdGM ones, we present the depen-
dence of the local dI /dV vs voltage at different distances r
from the Abrikosov vortex axis in the absence of a columnar
defect. One can clearly observe the disappearance of the
zero-bias peak in the core and opening of the minigap at
eV /�0�R /�=0.1 caused by the scattering at the defect.

VI. SUMMARY

To sum up, we described a transformation of the subgap
spectral branches of quasiparticle excitations in vortices
pinned by columnar defects of finite radii. We find that the
normal scattering at the defect surface results in the appear-
ance of additional spectral branches which transform into the
CdGM one with an increase in the impact parameter of qua-
siparticle trajectories. The increase in the defect radius is
accompanied by the increase in the minigap in the spectrum
which can be observed, e.g., in the STM measurements. One
can expect that such changes in the spectrum behavior
should affect strongly the dynamic mobility of vortices in the
presence of ac transport current �see, e.g., Ref. 34 for re-
view�.
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